Design of field-cycled magnetic resonance systems for small animal imaging

, , , and

Published 17 May 2006 2006 IOP Publishing Ltd
, , Citation K M Gilbert et al 2006 Phys. Med. Biol. 51 2825 DOI 10.1088/0031-9155/51/11/010

0031-9155/51/11/2825

Abstract

This paper presents a design study for a field-cycled magnetic resonance imaging (MRI) system directed at small animal imaging applications. A field-cycled MRI system is different from a conventional MRI system in that it uses two separate and dynamically controllable magnetic fields. A strong magnetic field is used to polarize the object, and a relatively weak magnetic field is used during signal acquisition. The potential benefits of field-cycled MRI are described. The theoretical dependences of field-cycled MRI performance on system design are introduced and investigated. Electromagnetic, mechanical and thermal performances of the system were considered in this design study. A system design for imaging 10 cm diameter objects is presented as an example, capable of producing high-duty-cycle polarizing magnetic fields of 0.5 T and readout magnetic fields corresponding to a proton Larmor frequency of 5 MHz. The specifications of the final design are presented along with its expected electromagnetic and thermal performance.

Export citation and abstract BibTeX RIS

Access this article

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

Purchase from

Article Galaxy
CCC RightFind

Purchase this article from our trusted document delivery partners.

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutional subscribers have access to the current volume, plus a 10-year back file (where available).

10.1088/0031-9155/51/11/010